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Abstract

The NAS Kernels Benchmark Program (NASKER) has been

used to measure performance on the Cray C90, Cray Y-MP,

Cray-2, Alliant FX/2800 and Connection Machine 2 computer

systems. The ground rules for this test are reiterated, with some

changes from the original proposal. On each system, tests are

performed using varying numbers of processors. Performance

results are presented at various tuning levels, and code
modifications are described. Differences between this

benchmark program and the NAS Parallel Benchmarks are
discussed.

Introduction

The NAS Kernels Benchmark Program (NASKER) [3] is a benchmark

program developed at NAS for the evaluation of supercomputer

performance. The benchmark is comprised of seven computational kernels,

chosen to be representative of the Computational Fluid Dynamics workload

at NAS. This report surveys the performance of the NAS Kernels on a

variety of computer systems.

The NAS Kernels

NASKER is described at length in [3], which also includes a listing of the

Fortran source code. Briefly, the seven kernels are as follows:

1. MXM m Outer product matrix multiplication.

2. CFFI2D m 2-dimensional complex Fast Fourier Transforms.

3. CHOLSKY B Simultaneous banded Cholesky factorization and
solution.

4. BTRIX -- Simultaneous block tridiagonal matrix solutions.

5. GMTRY B Vortex method solution using Gaussian elimination.

6. EMIT -- Creation of new vortices according to certain boundary

conditions.

7. VPENTA _ Simultaneous pentadiagonal matrix solutions.

After execution, NASKER prints the computational error, number of floating

point operations, execution time and performance for each kernel and for the

whole program. Details of these calculations are provided in [3].



Although each kernel emphasizes a supercomputer's vector performance,
taken together they were designed to not favor a particular vector
architecture. They include a variety of calculations and memory operations,
and contain loops with a range of vector lengths.

NASKER also tests the capabilities of vectorizing compilers. Over 99% of the
floating point calculations are found in potentially vectorizable loops, but
some are challenging to vectorize. To show the hardware capability as well as

the the amount of programmer intervention required, results are published
with varying levels of optimization. This demonstrates the maximum

performance possible on the kernels, while showing how much
programming effort is required to achieve these results.

Ground Rules

There are four levels of optimization permitted when presenting results,
levels 0, 20, 50 and unlimited. Each level corresponds to the maximum
number of lines of code that may be changed, added or deleted. The addition
of a compiler directive is considered a change. There is one exception, the

timing routine CPTIME, which may be modified without penalty as described
in the source listing.

The benchmark program may be split into separate source files. Each source

file may then be compiled separately, with arbitrary compiler options allowed
on each source file. This customization does not count toward the limits

prescribed by each tuning level. The issue of separate source files and

different compiler options was not explicitly addressed in [3], though it was
probably assumed that the benchmark program would be compiled as a single
source file. The common use of makefiles in scientific programming today
makes it reasonable to allow this "command line" tuning.

Originally, [3] did not allow calls to external subprograms unless they were
included in the program file and satisfied other requirements, such as ANSI

FORTRAN-77 conformance [1]. Today, however, optimizing compilers are
capable of replacing certain code constructs with calls to external, non-

standard, highly optimized library calls, without user intervention.
Furthermore, NASKER is being run on parallel computers, where non-

standard Fortran constructs and library calls, such as those required for
interprocessor communication, are essential. For these reasons, certain

extensions to FORTRAN-77 are now permissible. In particular, constructs
contained in the Fortran 90 [6] and Parallel Computing Forum [8] drafts are

acceptable, as are other constructs which facilitate execution on multiple
processors. For example, extensions and library routines which indicate
parallel regions of code, specify allocation or organization of data among
processors, communicate data between processors, or synchronize the action
of processors are allowed. In addition, computational routines which

perform dense matrix-matrix or matrix-vector multiplication, or one-
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dimensional or two-dimensional fast Fourier transforms are allowed. Such

routines must be callable with general array dimensions. Any extension to
FORTRAN-77 must be part of the vendor's usual library and available in

every installation.

The rules have also changed with regard to measuring multiprocessor

performance with the NAS Kernels. In [3], it was suggested that NASKER be
run simultaneously on each processor of a parallel computer. This would
measure the amount of interprocessor resource contention, but only on a
shared memory system. The approach in this report is to distribute a single
instance of the benchmark program over all or part of the parallel computer.
As with vectorization in the single processor test, this measures the ability of

the compiling system to automatically detect and exploit parallelism. Unlike
the approach suggested in [3], this demonstrates the impact of communication
overhead on distributed memory machines, as well as memory and bus

contention on shared memory machines. There are plans to port the NAS
Kernels to distributed memory, message passing architectures.

Results

In Figure 1, the performance results are shown for the machines most
recently tested, at various tuning levels and numbers of processors. The

performance (in millions of floating point operations per second, or MFLOPS)
is shown for each kernel, using the results printed by the benchmark program
during execution. See [3] for a discussion on how these rates are determined.
Except for the C90, all tests with more than one processor were done in a
dedicated mode with no other users sharing the processors at the time, and

were completed during June and July 1991. All vendors represented in this

survey were given the opportunity to provide source code (and compiler
options) at various tuning levels. A previous survey presented results for the
Cray X-MP, CDC 205 and Amdahl 1200 computer systems [2].

Cray Y-MP/8128

These tests were performed by the author on the machine named Reynolds at
NAS. It had the following configuration at the time of the tests:

Processors: 8

Main Memory: 128 MWords (1 GByte)

Compiler: CF77 5.0, Field Test Version

Operating System: UNICOS 6.0

Source code, including makefile, for both 0-line and 20-line tuning levels

were supplied by Cray Research, Inc. [7]. The code was compiled and run by
the author. Although any number of processors may be allocated at run time,

only powers of two were compatible with the tuning changes made to the
level-20 code. For comparison purposes, only powers of two were allocated
for the level-0 code as well.
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Each version of NASKER was compiled with all phases of the Cray compiling
system invoked. This includes a dependence analyser ("fpp") which inserts
directives for Autotasking and vectorization, and a translator ("fmp") which
converts the Autotasking directives into Fortran code. The final phases are
compiling ("cft77") and loading ("segldr"). The program was recompiled for
each number of processors, since the compiling system makes use of this

information through command line options. In the level-20 tuning, some
changes to the source code included the number of processors to be used, so
different versions of the level'20 code were used for different numbers of

processors.

On a single processor, the level-20 version showed significant improvements
(performance increase of 10% or more) in the MXM, CFFT2D and VPENTA
kernels. Exchanging two lines in MXM leads to an "inner product"
algorithm, which is not necessarily more effident, but is recognized by the

compiler as a matrix-multiplication and automatically replaced by a library
call. One line of source in each of CFFT2D and VPENTA were changed to
alter the dimensions of the arrays, eliminating power-of-two strides and

reducing memory bank conflicts.

The kernels CFFI2D, CHOLSKY, BTRIX, EMIT and VPENTA had

microtasking directives ("CMIC$ DO ALL...") added in the level-20 version
to improve multiprocessor performance. Code was added to CFFT2D,
CHOLSKY, and VPENTA to distribute work among processors. Figures 2 and
3 show the speedups obtained for level-0 _md level-20 versions of the

program. (If Rn is the performance rate for n processors reported in Figure 1,
then the speedup Sn graphed in Figures 2-9 is given by Sn = Rn/R1 .)

Cray-2/4-256

These tests were performed by the author on the machine named Navier at
NAS. It had the following configuration at the time of the tests:

Processors: 4

Main Memory: 256 MWords (2 GBytes)

Compiler: CF77 5.0, Field Test Version

Operating System: UNICOS 6.0

Cray Computer Corporation did not supply their own version of the
benchmark program [11], so the same versions used on Reynolds were used
on Navier. Both Reynolds and Navier used the same compiling system.

As on the Y-MP, optimizations in the level-20 version improved single-

processor performance in the MXM, CFFI2D and VPENTA kernels. The

differences were much more dramatic on the Cray-2, however. In the case of
the VPENTA kernel, the performance increased by over 16 times. This shows
the extreme sensitivity of the Cray-2 to power-of-two strides.
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Figures 4 and 5 show the speedups attained for each kernel when run on 2
and 4 processors. Speedups are not nearly as good as those attained by the
Y-MP, even for the level-20 versions of the program. In fact, the MXM kernel
showed no speedup when run with 2 processors, and the performance of the
VPENTA kernel actually decreased from 2 processors to 4 processors. The
reason for this behavior is not known.

Cray Y-MP C90/16256

These tests were performed by CRI personnel, not the author. The system
configuration reported by CRI is as follows:

Processors: 16

Main Memory: 256 MWords (2 GBytes)

Compiler: CF77 5.0

Operating System: UNICOS 7.0

(In this report, "Y-MP" refers to the Cray Y-MP/8128, while "C90" refers to the
Cray Y-MP C90/16256.) CRI reports that the C90 tests were performed with the

same code they supplied for the Y-MP tests, but were not run in a dedicated
mode. The C90 tests were performed in October 1991. [7]

The performance increase of a single C90 processor over a single Y-MP
processor varies considerably for the different kernels. The smallest
improvement occurs with the level-0 version of the VPENTA kernel, the C90

performing less than 13% faster than the Y-MP. However, the C90 processor
performs 2.8 times faster than the Y-MP processor on the level-20 version of
the same kernel. On both CFFT2D and VPENTA, the effect of removing
power-of-two strides is more pronounced on the C90 than the Y-MP, but not
to the degree of the Cray-2.

With 8 processors running the level-20 version of MXM, the C90 achieved a
speedup of 7.6, compared to the speedup of 7.1 attained by the Y-MP. Note

that these speedups are achieved using a highly optimized library call which
is automatically invoked by the CF77 compiler. The speedups attained by the

C90 are shown in Figures 6 and 7.

CM-2

These tests were performed by the author on the Connection Machine 2 at
NAS. It had the following configuration at the time of the tests:

Processors: 32,768 (32K)

Main Memory: 2 GBytes

Compiler: CM Fortran 1.0

The 32K 1-bit processors are supplemented by 1024 M-bit floating point units.

Each processor has 128K bytes of memory, for a total of 2 GB of memory in the
CM-2. The front-end processors are a Sun 4/490 ("Simeon") and a VAX 6230
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("Gottfried"),each with two sequencer interfaceboards. Simeon was used for
these tests.

The version of NASKER used on the CM-2 was developed atNAS by Russell

Carter [5].Carter reported on the effortrequired to port NASKER to CM

Fortran,and measured the performance of the ported code. The code

required significantmodification to forcecomputations to occur on the CM-2

instead of the front-end,and isthereforein the level-unlimitedtuning
category. The number of repetitionsof each kernel was reduced to the

minimum to keep execution time reasonable,and performance output was

printed with more decimal digits.(Performance rateswere not affectedby
these changes.) The MXM kernel was modified to callthe matrix

multiplicationlibraryroutine MATMUL. Thinking Machines Corporation

was invitedto furthertune the code in preparation of thisreport,but did not.
[101

At the time [5] was prepared, the CM-2 had 32-bit floating point units. With
the new hardware and compiler, which allows 64-bit arithmetic and

"slicewise" data storage, every kernel shows improved performance over that
reported in [5]. Unfortunately, the errors reported by NASKER have not
improved. According to [3], the total of the relative errors from the seven

kernels must be less than 5x10 -10. The errors reported for three of the kernels,

CFFT2D, GMTRY and EMIT, were greater than 10 -8. This suggests that some
arithmetic, probably with complex data, is not being performed with 64-bit
precision. This was also the case in [5].

Figure 8 shows the speedups attained with 16K and 32K processors over 8K
processors.

Alliant FX/2800

These tests were performed by Alliant personnel, not the author. The
machine configuration reported by Alliant is as follows:

Model 200 Processor Modules (uses Intel i860XR 40 MHz processors)
4 MB Global Cache

FX/Fortran version 1.2.0

Alliant personnel supplied the author with source code, makefiles, and

program output, along with explanations of the code modifications [9].

Although all floating point arithmetic was done with 64-bit predsion, default
integer word length is 32-bits. In the GMTRY and EMIT kernels, the
declarations of integer arrays in common blocks were modified so that

subsequent real arrays were aligned on 64-bit word boundaries. In the kernels

CFFI2D and VPENTA, array dimensions were modified to improve memory
access of the interleaved cache banks. In CHOLSKY, certain array indices were

transposed to obtain stride-one addressing in inner loops and improve local
memory access patterns. Only the GMTRY and VPENTA kernels exhibited
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significant performance improvement under these modifications when run
on a single processor. The effect of these changes upon multiprocessor

performance cannot be assessed, since 0-level results on 14 processors were

not reported.

The speedups attained with 14 processors are shown in Figure 9, using the
level-20 Version of the program. Surprisingly, the VPENTA kernel shows a
"perfect" speedup of 14. One possible explanation is that decomposition and
distribution of the work in VPENTA led to greater data locality in each

processor and better use of the cache.

Conclusion

As long as the NAS computational workload is represented to some extent by
these kernels, NAS will continue to use this benchmark program in

evaluating supercomputer performance. Proponents of highly parallel
computer systems argue that these kernels do not demonstrate the full
performance capabilities of parallel computers. This is indeed true. The
kernels lack sufficient parallelism for machines such as the CM-2, the
algorithms may be poorly matched to a given parallel architecture, and the
use of parallel language constructs require higher tuning levels. However,
these arguments do not imply that the NASKER program should not be run
on such machines. Instead, potential users should be aware that they will not

achieve good performance on programs with similar computational kernels.

The NAS Parallel Benchmarks [4] avoid these difficulties on highly parallel

systems. The problems are larger, and are specified only in definition of the
problem, not in implementation. This allows vendors greater freedom to
demonstrate high performance on problems relevant to NAS, the cost being

greater development effort. However, performance on the NAS Parallel
Benchmarks does not necessarily reflect performance on existing CFD
programs. The NAS Kernels Benchmark Program is designed to measure the
latter.
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COMPUTER

Cray Y-MP/8128

Cray-2/4-256

Cray C-90/16256

CM-2

AHiantFX/2800

NO. TUN-

CPUS ING MXM CFFT CHOL BTRX GMTRY EMIT VPNTA TOTAL

1

1

2

2

4

4

8

8

1 0

1 20

2 0

2 2O

4 0

4

1

1

2

2

4

4

8

8

8K ur_

16K

32K unkn

1 0

1 20

14

0 276.04 76.53 90.37 140.86 251.32 181.63 51.39 108.88

20 304.99 192.12 90.45 150.92 251.15 181.10 196.79 180.84

0 547.72 136.43 14521 200.34 484.27 355.06 72.28 177.50

20 600.16 351.67 16323 290.92 484.28 355.58 382.17 341.68

0 1060.80 206.82 20821 253.44 921.33 681.07 72.97 234.40

20 1196.14 577.42 273.10 527.92 922.17 679.50 649.43 i 601.76

0 1896.36 261.53 209.74 271.02 1634.36 1217.02 72.62 262.90

20 2176.50 778.31 383.29 979.86 1622.14 1236.62 950.58 931.10

187.50 1124 27.15 44.40 176.52 147.52 9.28 23.43

416.53 65.30 27.15 45.02 176.75 148.47 155.81 76.50

174.92 18.38 37.17 47.03 288.55 269.10 9.78 30.84

412.98 8421 50.25 81.53 288.59 271.31 268.61 122.12

394.86 19.90 44.65 50.41 421.34 365.53 9.76! 33.33

20 728.56 161.76 55.78 117.03 347.23 369.40 240.20 170.89

0 787.21 97.09 244.17 273.44 672.38 407.50 57.861 165.67

20 914.03 473.25 297.96 272.32 669.44 405.64 553.88 452.65

0 1542.29 17127 374.88 341.66 1256.31 788.33 78.49i 258.06

20 1714.78 592.94 276.02 497.40 1224.92 708.91 834.69 649.03

0 3008.06 257.72 517.81 422.50 2347.05 1516.70 78.80 319.54

20 3531.74 1381.20 809.46 1009.40 2345.64 1521.34 1144.30 1402.90

0 4503.12 321.97 506.62 436.15 3776.99 2693.62 77.68 344.93

20 6921.63 1723.45 1011.19 1699.24 3894.251 2732.61 1304.99 1979.77

3.464 0.066 0.033 0.006 2.144 _ 0.530 0.064 0.49

6.100 0.107 0.055 0.010 2.966 0.828 0.116 0.77

11.210 0.198 0.096 0.015 5.475 1.552 0.121 129

21.87 7.09 3.93 4.56 2.13 10.28 3.18 5.10

21.92 7.12 3.95 4.56 4.97 10.44 3.61 6.13

20 247.78 34.35 15.05 40.89 38.39 77.99 50.76 4125

Figure 1. NAS Kernel Benchmark Program (MFLOPS)
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4

3

0

Cray-2/4-256 (level-O)
2 CPUS

II 4 CPUS J

Figure 4. Speedup of level-0 NAS Kernels on Cray-2
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O9
1

0

Cray-2/4-256 (level-20)
2 cPus

[] 4 CPUS

X

Figure 5. Speedup of level-20 NAS Kernels on Cray-2
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